Module 1 – What is RFID

Main Objectives:

1. Define RFID technology, what it is and its working principles.

2. Recognize main types of RFID systems based on communication:
 - Passive (no power source but derives its power from the reader's transmission)
 - Battery Assisted or Semi-Passive (tag has a battery to assist with transmitting response to the reader but relies on the reader transmission to initiate action or wake up, does not beacon)
 - Active (tag has a battery and does not rely on reader transmission for any power needs)

3. Know characteristics of these categories and how they impact:
 - Data Transfer Rate
 - Read Range
 - Cost
 - Typical Applications
 - Frequencies normally used
 - Behavior around water based liquids and metals
 - Regulations
 - Modes of operations (inductive/capacitive)
 - Types of antennas used

Passive RFID

The passive RFID tag has no power source but derives its power from the reader’s transmission. It often comes in form of a flat inlay or a label and is the simplest type of RFID tag.

- Frequencies normally used
 - Low Frequency (LF) – 120 – 150 kHz
 - High Frequency (HF) – 13.56 MHz
 - Ultra-High Frequency (UHF) – 860 – 960 MHz
 - Microwave Frequency 2.45 GHz

- Data Transfer Rate – depends on frequency and is function of the wave
 - LF – very slow
 - HF – slow
 - UHF – fast
 - Microwave – ultrafast
• Read Range – shortest, up to 30 ft, depends on frequency
 o LF – up to few inches
 o HF – up to 3 feet, most often 3- 5 inches
 o UHF – up to 30 ft
 o Microwave – few inches max.
• Cost – lowest, starting at 5 cents per tag in high volumes
• Typical Applications – inventory tracking, asset tracking, access control, warehouse, hospital, office, events
• Behavior around water based liquids and metals – depends on frequency:
 o LF, HF – can read through aqueous liquids
 o UHF, Microwave – cannot read through aqueous liquids
 o No frequencies can read through metal and tags get detuned when placed on or near metal objects.
• Regulations
 o FCC Part 15.247 – governs UHF allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).
 ▪ For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the maximum peak conducted output power of intentional radiators is 1 watt.
 o ETSI 302 208 (newer)
 ▪ 865.0 – 868.0 MHz
 ▪ 15 channels – 200 kHz each
 ▪ Three sub-bands
 ▪ Up to 2 W ERP in subband 865.6 – 877.6 MHz (10 channels)
 ▪ Required LBT
 o ETSI 300-220 (older, restrictive)
• Standards (air interface)
 o LF – ISO/IEC 18000-2
 o HF – ISO/IEC 18000-3, ISO/IEC 15693, ISO/IEC 14443
 o UHF – ISO/IEC 18000-6 (A, B, C), EPC Global/GS1 Class 1 Gen 2 (ratified into ISO 18000-6C)
 o Microwave – ISO/IEC 18000-4 for 2.45 GHz, (ISO/IEC 18000-5 for 5.8 GHz (withdrawn due to lack of use)
• Modes of operations – based on frequency
 o LF, HF - Inductive coupling – based on changes in magnetic field
 o UHF, Microwave - Capacitive coupling also called passive backscatter – based on changes in electric field
• Types of antennas used
 o LF, HF – coil antenna
 o UHF, Microwave – dipole antenna

Battery Assisted Passive RFID

The battery assisted passive RFID tag (also called BAP or semi-passive tag) relies on the initial transmission from the reader and then uses a battery to assist with transmitting response to the reader. This allows for longer read ranges. The BAP tags have often integrated sensors.

• Frequencies normally used
 o Ultra-High Frequency (UHF) – 860 – 960 MHz
 o Microwave Frequency 2.45 GHz

• Data Transfer Rate – depends on frequency and is function of the wave
 o UHF – fast
 o Microwave – ultrafast

• Read Range – medium, up to 100 ft, depends on frequency and technology
 o UHF – usually up to 100 ft (depends on technology)
 o Microwave – usually up to 30 ft (depends on technology)

• Cost – high, starting at several dollars per tag

• Typical Applications – applications with sensors – temperature tracking for inventory, transportation, assets; regular and returnable asset tracking where long read ranges are necessary

• Behavior around water based liquids and metals – depends on frequency:
 o UHF, Microwave – cannot read through aqueous liquids
 o No frequencies can read through metal.
 o Tags are encapsulated and can be tuned to perform well on metal.

• Regulations
 o FCC Part 15 – governs UHF allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).

• Standards (air interface) – compatible with passive readers if compliant with same standards as below:
 o UHF – ISO/IEC 18000-6 (A, B, C), EPC Global/GS1 Class 1 Gen 2 (ratified into ISO 18000-6C)
 o Microwave – ISO/IEC 18000-4 for 2.45 GHz, (ISO/IEC 18000-5 for 5.8 GHz (withdrawn due to lack of use)
- Modes of operations – based on frequency
 - UHF, Microwave - passive backscatter – based on changes in electric field – aided by the battery

- Types of antennas used
 - UHF, Microwave – dipole antenna

Active RFID

The active RFID tag has a battery and does not rely on reader transmission for any power needs. It can beacon and have integrated sensors.

- Frequencies normally used
 - Ultra-High Frequency (UHF) – 433 MHz
 - Microwave Frequency - 2.45 GHz
 - Ultra Wide Band (UWB) Frequency 3.2 – 10 GHz

- Data Transfer Rate – depends on frequency and is function of the wave
 - UHF – fast
 - Microwave – ultrafast
 - UWB Frequency - fastest

- Read Range – longest
 - UHF up to 1000’s of feet (depends on technology and power source)
 - Zigbee – about 30 – 300 ft (10 – 100 m)
 - WiFi IEEE 802.11n – up to 820 ft (250 m)

- Cost – highest, starting around $20 per tag (ballpark price)

- Typical Applications
 - Applications with sensors – temperature tracking for inventory, transportation, assets; tamper sensors;
 - Long range tracking – cars, rail cars, containers for transportation and control in depots, docks, shipyards, military, etc.,
 - Real-time location systems (RTLS) – Both Wi-Fi and UWB technology is often used for RTLS and UWB is one of the most accurate technologies for location.

- Behavior around water based liquids and metals – depends on frequency:
 - Cannot read through aqueous liquids.
 - No frequencies can read through metal.
 - Tags are encapsulated and can be tuned to perform well on/around metal.
Due to the tag having a battery and transmitter and therefore stronger signal, the signal can bounce/bend around metal objects, which means that active RFID has usually better performance in metal environments.

- Regulations
 - FCC Part 15 – governs allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).

- Standards (air interface):
 - UHF – ISO/IEC 18000-7 for 433 MHz
 - Microwave – ISO/IEC 18000-4 for 2.45 GHz
 - DASH7 (2nd gen of ISO 18000-7) for 433 MHz
 - Wi-Fi IEEE 802.11n – 2.45 GHz
 - Zigbee IEEE 802.15.4 for 868/915 MHz or 2.45 GHz

- Modes of operations
 - Active transmission

- Types of antennas used
 - Dipole or monopole antenna

Study List:

For comprehensive explanation, please read:
Passive vs. Active
RFID Frequencies
Standards and Regulations