

# Module 1 – What is RFID

#### Main Objectives:

- 1. Define RFID technology, what it is and its working principles.
- 2. Recognize main types of RFID systems based on communication:
  - Passive (no power source but derives its power from the reader's transmission)
  - Battery Assisted or Semi-Passive (tag has a battery to assist with transmitting response to the reader but relies on the reader transmission to initiate action or wake up, does not beacon)
  - Active (tag has a battery and does not rely on reader transmission for any power needs)
- 3. Know characteristics of these categories and how they impact:
  - Data Transfer Rate
  - Read Range
  - Cost
  - Typical Applications
  - Frequencies normally used
  - Behavior around water based liquids and metals
  - Regulations
  - Modes of operations (inductive/capacitive)
  - Types of antennas used

### **Passive RFID**

The passive RFID tag has no power source but derives its power from the reader's transmission. It often comes in form of a flat inlay or a label and is the simplest type of RFID tag.

- Frequencies normally used
  - Low Frequency (LF) 120 150 kHz
  - High Frequency (HF) 13.56 MHz
  - Ultra-High Frequency (UHF) 860 960 MHz
  - Microwave Frequency 2.45 GHz
- Data Transfer Rate depends on frequency and is function of the wave
  - $\circ$  LF very slow
  - $\circ \quad \text{HF}-\text{slow}$
  - UHF fast
  - Microwave ultrafast



- Read Range shortest, up to 30 ft, depends on frequency
  - $\circ$  LF up to few inches
  - HF up to 3 feet, most often 3- 5 inches
  - $\circ$  UHF up to 30 ft
  - Microwave few inches max.
- Cost lowest, starting at 5 cents per tag in high volumes
- Typical Applications inventory tracking, asset tracking, access control, warehouse, hospital, office, events
- Behavior around water based liquids and metals depends on frequency:
  - LF, HF can read through aqueous liquids
  - UHF, Microwave cannot read through aqueous liquids
  - No frequencies can read through metal and tags get detuned when placed on or near metal objects.
- Regulations
  - FCC Part 15.247 governs UHF allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).
    - For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands, the maximum peak conducted output power of intentional radiators is <u>1 watt.</u>
  - ETSI 302 208 (newer)
    - 865.0 868.0 MHz
    - 15 channels 200 kHz each
    - Three sub-bands
    - Up to 2 W ERP in subband 865.6 877.6 MHz (10 channels)
    - Required LBT
  - ETSI 300-220 (older, restrictive)
- Standards (air interface)
  - LF ISO/IEC 18000-2
  - o HF ISO/IEC 18000-3, ISO/IEC 15693, ISO/IEC 14443
  - UHF ISO/IEC 18000-6 (A, B, C), EPC Global/GS1 Class 1 Gen 2 (ratified into ISO 18000-6C)
  - Microwave ISO/IEC 18000-4 for 2.45 GHz, (ISO/IEC 18000-5 for 5.8 GHz (withdrawn due to lack of use)
- Modes of operations based on frequency
  - LF, HF Inductive coupling based on changes in magnetic field
  - UHF, Microwave Capacitive coupling also called passive backscatter – based on changes in electric field



- Types of antennas used
  - o LF, HF coil antenna
  - UHF, Microwave dipole antenna

# **Battery Assisted Passive RFID**

The battery assisted passive RFID tag (also called BAP or semi-passive tag) relies on the initial transmission from the reader and then uses a battery to assist with transmitting response to the reader. This allows for longer read ranges. The BAP tags have often integrated sensors.

- Frequencies normally used
  - Ultra-High Frequency (UHF) 860 960 MHz
  - Microwave Frequency 2.45 GHz
- Data Transfer Rate depends on frequency and is function of the wave
  - UHF fast
  - Microwave ultrafast
- Read Range medium, up to 100 ft, depends on frequency and technology
  - UHF usually up to 100 ft (depends on technology)
  - Microwave usually up to 30 ft (depends on technology)
- Cost high, starting at several dollars per tag
- Typical Applications applications with sensors temperature tracking for inventory, transportation, assets; regular and returnable asset tracking where long read ranges are necessary
- Behavior around water based liquids and metals depends on frequency:
  - UHF, Microwave cannot read through aqueous liquids
  - No frequencies can read through metal.
  - Tags are encapsulated and can be tuned to perform well on metal.
- Regulations
  - FCC Part 15 governs UHF allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).
- Standards (air interface) compatible with passive readers if compliant with same standards as below:
  - UHF ISO/IEC 18000-6 (A, B, C), EPC Global/GS1 Class 1 Gen 2 (ratified into ISO 18000-6C)
  - Microwave ISO/IEC 18000-4 for 2.45 GHz, (ISO/IEC 18000-5 for 5.8 GHz (withdrawn due to lack of use)



- Modes of operations based on frequency
  - UHF, Microwave passive backscatter based on changes in electric field – aided by the battery
- Types of antennas used
  - UHF, Microwave dipole antenna

## **Active RFID**

The active RFID tag has a battery and does not rely on reader transmission for any power needs. It can beacon and have integrated sensors.

- Frequencies normally used
  - Ultra-High Frequency (UHF) 433 MHz
  - o Microwave Frequency 2.45 GHz
  - Ultra Wide Band (UWB) Frequency 3.2 10 GHz
- Data Transfer Rate depends on frequency and is function of the wave
  - UHF fast
  - Microwave ultrafast
  - UWB Frequency fastest
- Read Range longest
  - UHF up to 1000's of feet (depends on technology and power source)
  - Zigbee about 30 300 ft (10 100 m)
  - WiFi IEEE 802.11n up to 820 ft (250 m)
- Cost highest, starting around \$20 per tag (ballpark price)
- Typical Applications
  - Applications with sensors temperature tracking for inventory, transportation, assets; tamper sensors;
  - Long range tracking cars, rail cars, containers for transportation and control in depots, docks, shipyards, military, etc.,
  - Real-time location systems (RTLS) Both Wi-Fi and UWB technology is often used for RTLS and UWB is one of the most accurate technologies for location.
- Behavior around water based liquids and metals depends on frequency:
  - Cannot read through aqueous liquids.
  - No frequencies can read through metal.
  - Tags are encapsulated and can be tuned to perform well on/around metal.



- Due to the tag having a battery and transmitter and therefore stronger signal, the signal can bounce/bend around metal objects, which means that active RFID has usually better performance in metal environments.
- Regulations
  - FCC Part 15 governs allowed transmitted power from the reader/interrogator (maximum 4 W EIRP), frequency hopping channels (50) and the channel width (500 kHz).
- Standards (air interface):
  - UHF ISO/IEC 18000-7 for 433 MHz
  - Microwave ISO/IEC 18000-4 for 2.45 GHz
  - DASH7 (2<sup>nd</sup> gen of ISO 18000-7) for 433 MHz
  - Wi-Fi IEEE 802.11n 2.45 GHz
  - Zigbee IEEE 802.15.4 for 868/915 MHz or 2.45 GHz
- Modes of operations
  - Active transmission
- Types of antennas used
  - Dipole or monopole antenna

Study List:

For comprehensive explanation, please read: <u>Passive vs. Active</u> <u>RFID Frequencies</u> <u>Standards and Regulations</u>